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Glioblastomamultiforme (GBM) is a grade 4 and the most aggressive form of glioma, with

a poor response to current treatments. The expression of microRNAs (miRNAs) is widely

dysregulated in various cancers, including GBM. One of the overexpressed miRNAs in

GBM is miR-21 which promotes proliferation, invasion and metastatic behaviors of tumor

cells. With a size of 30–100 nm, the extracellular vesicles “exosomes” have emerged as

a novel and powerful drug delivering systems. Recently, exosomal transfer of miRNAs or

anti-miRNAs to tumor cells has introduced a new approach for therapeutic application

of miRNAs to combat cancer. Here, we have tried to down-regulate miR-21 expression

in glioma cell lines, U87-MG, and C6, by using engineered exosomes, packed with a

miR-21-sponge construct. Our data revealed that the engineered exosomes have the

potential to suppress miR-21 and consequently to upregulate miR-21 target genes,

PDCD4 and RECK. Interestingly, in cells treated with miR-21-sponge exosomes we

observed a decline in proliferation and also an elevation in apoptotic rates. Finally, in a rat

model of glioblastoma, administrating exosomes loadedwith amiR-21-sponge construct

leads to a significant reduction in the volume of the tumors. In brief, our findings suggest

a new therapeutic strategy to use engineered exosomes to deliver a miR-21-sponge

construct to GBM cells, in order to block its malignant behavior.

Keywords: glioblastoma, microRNA, miR-21, exosomes, sponge

INTRODUCTION

Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors/gliomas. Glioma
is divided into 4 grades and GBM is the grade 4, according to the World Health Organization
(WHO) classifications (1). The life expectancy of the GBM patients is ∼18 months after diagnosis
(2). In GBM, similar to other cancer types, the communication between tumor cells and its
microenvironment has a big impact on tumor progression; and hence it provided a new approach
for cancer treatment (3, 4).

Extracellular vesicles (Evs) are membrane fragments shed from cell surfaces to transfer
cytoplasmic or membrane contents to neighboring cells or body fluids. Evs contain numerous
proteins, lipids, DNAs, mRNAs, and various kinds of non-coding RNAs (5–7). Exosomes are a
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subclass of EVs with a size of 30–100 nm, with a recognized
role as an important mediator of signaling event between tumor
cells and other cells in its microenvironment (8, 9). One of
the exosomes’ components with an important signaling role in
cancer progression is microRNAs (miRNAs) (10–13).

miRNAs are small (∼22 nt) non-coding RNAs involved in
diverse physiological and developmental processes, and their
dysregulation lead to several diseases including cancer (14–16).
miR-21 is a well-known miRNA, found to be overexpressed in
almost all cancer types, where its upregulation promotes cell
proliferation, invasion, and metastatic behavior. miR-21 targets
several genes such as PDCD4, TIMP3, and RECK, which are
key regulators of apoptotic and metastatic pathways (17–23).
Concerning its global oncogenic role, miR-21 has recently been
proposed as a suitable target for GBM therapy. Inhibition of
miR-21 via different strategies elevated apoptotic cell death,
sensitivity to chemotherapy/radiotherapy, and diminished tumor
progression (24–28).

It has already been shown that miRNA inhibition using decoy
or sponge-like constructs have a potential therapeutic benefit.
The sponge construct are designed to bind its complementary
miRNA(s) or their seed sequences, and hence block the binding
of the miRNA to its biological targets (29–31). Here, we have
designed a sponge sequence against miR-21, packaged the
construct into exosomes of the transfected cells, and introduced
the engineered exosomes to glioblastoma cell lines, U87-MG and
C6. Our data revealed that the exosomes containing miR-21-
sponge have a therapeutic potential to combat glioblastoma.

MATERIALS AND METHODS

Plasmid Constructions
miR-21-sponge was constructed by including three miR-
21 complementary sequences (HGNC: 31586) joined
to each other by linkers and cloned into Tracer vector
(Supplementary Table 1). Pri-miR-21 DNA was also cloned
into pLentiIII vector as a control for miR-21 upregulation.
The accuracy of cloning procedures was confirmed by DNA
sequencing (Macrogene, South Korea).

Cell Culture and Transfection
HEK-293T cells was obtained from the Iranian biological
resource center and cultivated in DMEM-F12 media (Gibco,
USA), containing 10% fetal bovine serum (FBS, Gibco, USA) and
1% penicillin-streptomycin (Bio Basic, Canada) and seeded in 12-
well cell culture plates (SPL Life Science, South Korea). Stable
cell line colonies expressing pri-miR-21 and miR-21-sponge, as
well as their mock vectors were generated by transfecting the
cells at a confluency of 70%, using lipofectamin 3000 (Invitrogen,
USA). Stable cell line colonies were produced via antibiotic
selection of 4µg/ml Puromycin (Sigma, Germany) and 2µg/ml
Zeocin (Invitrogen, USA), then the antibiotic concentrations
were reduced slowly.

RNA Extraction and RT-PCR
Total RNA was extracted using Trizol or Trizol LS (for cell
media and exosomes) reagents (Invitrogen, USA). After cDNA

synthesis (Takara, Japan), real-time PCR analysis was performed
to quantify miR-21 expression level via stem-loop method [(32);
Supplementary Table 1], using SYBR Green reagent (Bio Fact,
South Korea). The expression levels of miR-21 targets, PDCD4
(HGNC: 8763) and RECK (HGNC: 11345), and also miR-21-
sponge production in transfected cells were quantified using
specific primers. 5S rRNA (HGNC: 1380) was used as an internal
control for miR-21 data analysis and GAPDH (HGNC: 4141)
was also employed as the internal control for PDCD4 and RECK
expression analysis (Supplementary Table 1).

Co-culture Tests
To confirm miR-21 and miR-21-sponge effects on target cells,
HEK-293T stably transfected cells were seeded on 6-well plates.
After 24 h, U87-MG cells (obtained from Iranian biological
resource center), as target cells, were seeded on inserts with
0.4µm pores (SPL Life Science, South Korea). Twenty-four and
forty-eight hours later, total RNAs of HEK-293T and U87-MG
cells were extracted for gene expression analysis.

Exosome Purification and Characterization
Stable cell lines were cultured in a T75 flask in media
supplemented with exosome-free FBS [exosomes depleted by
centrifugation at 100,000 g for 2.5 h; (33)]. Conditioned media
were collected every 2–3 days, and exosomes were extracted
by several steps of centrifugation and then solved in 100 µl
of sterile PBS (300 g/10min, 2,000 g/10min, 10,000 g/30min
20,000 g/60min, 100,000 g/70min). The size of the exosomes
were then calculated by DLS analysis (with 10min sonication)
and Bradford assay was done to determine their concentrations.
Scanning electron microscopy (SEM) was performed using a
KYKY-EM3200 instrument. Western blotting was carried out
using two specific antibodies against exosomes’ membrane,
anti-CD81, and anti-CD63 (Bioscience, SBI, USA). Exosomes
were lysed with RIPA buffer (Santa Cruz, USA), and protein
concentrations was quantified using the Bradford assay. Briefly,
20 µg of total protein was separated via the SDS-PAGE and
blotted onto a PVDF membrane (Bioscience, SBI, USA). After
blocking with 5% dry milk in Tris buffer saline plus 0.05% Tween
(TBS-T), samples were incubated with anti-CD63 or anti-CD81
antibodies, for overnight at 4◦C. Then, the blot was incubated
with the goat anti-rabbit HRP-conjugated secondary antibody
(Bioscience, SBI, USA) for 1 h at room temperature. Finally,
visualization of the target proteins was done by the ECL kit (Santa
Cruz, USA).

Exosomes Uptake
To confirm uptake of the collected exosomes into the U87-MG
target cells, exosomes pellets were stained with PKH-26 (Sigma,
Germany), as instructed by the manufacturer’s protocol. After
12–14 h of incubation, the treated cells were fixed and stained
with DAPI.

Exosomes Effect on U87-MG and C6 Cell
Lines
U87-MG cells were seeded onto 24-well plate in RPMI
media (Gibco, USA) supplemented with 10% FBS and 1%
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Penicillin/streptomycin antibiotics. Then, extracted exosomes
were added to the cells at 50µg/ml concentration, and after 24
and 48 h the expression levels of miR-21 and miR target genes
were quantified. C6 cells (rat glioma cell line, obtained from
Iranian biological resource center) were seeded onto a 24-well
plate in Ham’s F12 media (Biosera, France), supplemented with
10% FBS and 1% Penicillin/streptomycin antibiotics. Then, the
effects of extracted exosomes on examined cells were analyzed, as
described for U87-MG cells.

MTT Assay
After seeding U87-MG cells on a 96-well plate, the extracted
exosomes were added to the cells with a concentration of 50 µg
per well. After 24 and 48 h, 50 mg/ml of MTT (10% of total
volume) was added, and after 4 h of incubation, crystals were
dissolved in DMSO and cell viability was evaluated in 570 nm.
Three independent replicates were used for each experiment.

Flow Cytometry Assay
To determine the rate of apoptosis and necrosis, we employed
flow cytometry and Annexin V staining method. After seeding
U87-MG cells on a 24-well plate, extracted exosomes were added
to the cells at a concentration of 50 µg per well. After 24/48 h, the
cells were washed out with PBS and stainedwith AnnexinV-FITC
as well as propidium Iodine solutions, before being analyzed
by flow cytometry. Two independent replicates were used for
each experiment.

In vivo Experiments
To examine a potential therapeutic effect of engineered exosomes
in vivo, we generated a glioblastoma xenograft rat model by
stereotaxically injecting 1 million C6 cells in 10 µl of PBS
at Caudate Putamen striatum (CPu, 2mm up and right from
bregma, in 4mm depth) ofWistar male rats (250–300 g). After 11
days, the tumor production was verified by Magnetic Resonance
Imaging (MRI) with T2method. The size of the tumors were then
measured by FSL (FMRIB Software Library), with a threshold-
determining and manually voxel counting. To analyze the
exosome effects, we stereotaxically injected 15–20µg of extracted
exosomes at the same position of rat brains and took MRI
pictures again after 1 week.

Statistical Analysis
All data repeated at least 3 times and were analyzed with
11CT method by GraphPad Prism 6 software. The statistically
significant changes tested with the ordinary ANOVA test. All
histograms were presented as mean ±SD, and differences were
considered as significant when the P < 0.05.

RESULTS

An Engineered miR-21-Sponge Construct
Bind and Inhibited miR-21 Actions
To block the action of miR-21, we designed a DNA construct
containing three miR-21 complementary sequences, and cloned
it into the Tracer vector. We also cloned a DNA segment
containing pri-miR-21 sequence, and cloned it into the
pLentiIII vector. In stably transfected HEK-293T cells with
the recombinant vectors, the expression level of miR-21
was measured via real-time PCR (Supplementary Figure 1).
According to our data, the overexpressed miR-21-sponge has
the potential to reduce miR-21 level in transfected cells (P <

0.05, Figure 1A), in comparison to the cells stably transfected
with an empty (mock) tracer vector and also untransfected
HEK-293T cells. In stable cells overexpressing pri-miR-21, the
expression level of miR-21 was elevated as much as 1,000
times, in comparison to the untransfected HEK-293T cells
(P < 0.0001, Figure 1B).

Specific primers were also employed to confirm the expression
level of miR-21-sponge construct in stably transfected HEK-293T
cell line, as well as in conditioned media collected from the
cells (Figure 1C).

Altered miR-21 Level in U87-MG Cells
Co-cultured With Pri-miR-21 or
miR-21-Sponge Expressing HEK-293T
Cells
The glioblastoma cell line, U87-MG, is used to examine a
potential effect of secreted miR-21 and miR-21-sponge in a co-
culture system with the HEK-293T stably transfected cells. After
24 and 48 h of conditioned media contact between U87-MG
and pri-miR-21 or miR-21-sponge expressing HEK-293T cells,

FIGURE 1 | The expression level of miR-21 in HEK-293T stable cell lines exogenously expressing pri-miR-21 or miR-21-sponge. (A) A decline in miR-21 level (P <

0.05) in the cells stably expressing miR-21-sponge construct, in comparison to the untreated or stably expressing the mock-Tracer vector HEK-293T cells. (B) A

dramatic upregulation of miR-21 (P < 0.0001) in HEK-293T stable cells overexpressing pri-miR-21, in comparison to the untreated or HEK-293T cells stably

expressing a mock-pLentiIII vector. (C) An agarose gel electrophoresis showing the presence of the miR-21-sponge (94 bp) in the cell lysates and cell media of

miR-21-sponge expressing HEK-293T cells. *P < 0.05; ****P < 0.0001, which is represented by some statistical software like Graph Pad.
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miR-21 expression level was quantified with a real-time RT-PCR
approach. Our data revealed that secreted miR-21-sponge can be
transferred from the producing cells to the U87-MG cells and
reduce the level of miR-21 in the target cells (Figure 2). Similarly,
the secreted miR-21 had a similar potential in elevating the level
of miR-21 in co-cultured U87-MG cells. Although the secreted
miR-21 had a significant effect in U87-MG’s miR-21 level after
24 h of co-culture, however, the effect of miR-21-sponge was
more evident after 48 h of treatment.

The Secreted miR-21 and miR-21-Sponge
Was Packaged Inside Exosomes
To confirm a potential exosomes packaging of secretory miR-
21 and miR-21-sponge of the stably transfected HEK293T cells,
the exosomes were extracted via ultracentrifugation of the serum
depleted conditioned cell media. To confirm the identity of the
exosomes, the size of the extracellular vesicles were determined
with DLS, which demonstrated a single peak with 66.65 nm
diameter for the vesicles (Supplementary Figure 2A). Moreover,
Western blot assay confirmed the presence of the specific
exosomes markers on the surface of the extracted exosomes
(Supplementary Figure 2B). Finally, SEM showed a <100 nm
diameters of the extracted vesicles, corresponding to the size
of the typical exosomes (Supplementary Figure 2C). Next, we
confirmed the integration of the PKH-26 labeled exosomes to
the cell membranes of the target cells, 12 h after incubation
(Supplementary Figure 3).

miR-21 and miR-21-Sponge Packaged
Within Engineered Exosomes
miR-21 level in exosomes extracted from pri-miR-21 expressing
HEK-293T stable cell line represented an approximately 10 folds
elevation, compared to those of mock-pLentiIII expressing HEK-
293T stable cell line (P < 0.0001). A decline in the level of
endogenous miR-21 in exosomes enriched from the conditioned
media frommiR-21-sponge expressing HEK-293T stable cell line
was also observed, in comparison with those of mock-Tracer
expressing HEK-293T stable cell line (P < 0.0001, Figure 3A).

FIGURE 2 | miR-21 expression level in U87-MG cells, after 24 and 48 h of

co-culture with HEK-293T cells stably expressing pri-miR-21 or

miR-21-sponge cells. The results revealed a potential transfer of miR-21 and

miR-21-sponge from HEK-293T to U87-MG cells via conditioned media. ****P

< 0.0001, which is represented by some statistical software like Graph Pad.

Accordingly, a packaging of miR-21-sponge construct was
demonstrated in exosomes enriched from conditioned media of
the miR-21-sponge expressing cells (Figure 3B).

The Effects of the Engineered Exosomes
Treatment on U87-MG Cells
To evaluate any potential therapeutic effects of engineered
exosomes, we quantified the levels of miR-21 and its well-known
targets on U87-MG cells exposed to the exosomes enriched for
either miR-21 or miR-21-sponge. Our results revealed that the
level of miR-21 was significantly altered by transferred miR-21
and miR-21-sponge containing exosomes to the U87-MG target
cells after 24 and 48 h of treatment. A significant increase in
the level of miR-21 was evident after treating the U87-MG cells
with miR-21 enriched exosomes at 24 h (P < 0.01) and 48 h
(P < 0.001) of treatment. In contrast, a decline of endogenous
miR-21 in the cells exposed to the miR-21-sponge enriched
exosomes was statistically significant only at 48 h post-treatment
(P < 0.001; Figure 4A).

To explore the functional effects of the engineered exosomes
on target cells, their effects were also examined on two
important miR-21 target genes, PDCD4 and RECK. As expected,
an elevation of miR-21 in the cells exposed to the miR-21
enriched exosomes followed by a significant down-regulation
of PDCD4 and RECK in U87-MG cells. Similarly, a decline
in the level of miR-21 in the U87-MG cells treated with miR-
21-sponge containing exosomes followed with an upregulation
of PDCD4 and RECK. Again, the effect was statistically
significant only at 48 h post-treatment (Figures 4B,C). Exosomes
extracted from the mock-vectors expressing cells, were used as
controls to normalize the level of gene expression in all above
mentioned experiments.

miR-21-Sponge Enriched Exosomes
Decreased the Cell Viability Rate of
U87-MG Cells
Our MTT assay data revealed that the exposure of U87-
MG cells with engineered exosomes enriched for miR-21 or
miR-21-sponge can affect cell viability of the treated cells.
MTT absorbance alteration was more significant at 24 h post-
incubation for both miR-21 (P < 0.0001) and miR-21-sponge
(P < 0.001) enriched exosomes. After 48 h of treatment, MTT
absorbance alteration was still significant (P < 0.05), however,
the level of alterations was lower than that of the 24 h time
point (Figure 5).

miR-21-Sponge Enriched Exosomes
Increased the Cell Death Rate in Treated
U87-MG Cells
In a continuation of the MTT experiment, we employed
Annexin V-FITC and PI staining methods to investigate the
rate of apoptosis in the U87-MG cells treated with miR-21-
sponge containing exosomes. Our data revealed an elevated
cell death rate (most prominently after 24 h of treatment) in
the cells exposed to the exosomes enriched for miR-21-sponge,
compared to the exosomes extracted from the mock-Tracer
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FIGURE 3 | miR-21 levels in extracted exosomes from miR-21 and miR-21-sponge expressing HEK-293T cells. (A) Log2 of miR-21 levels in extracted exosomes

from stable HEK-293T cells exogenously expressing miR-21, in comparison with exosomes extracted from HEK-293T cells expressing mock-pLentiIII, revealed a

significant elevation in miR-21 level (P < 0.0001). Similarly, miR-21 level demonstrated a significant decline in extracted exosomes obtained from miR-21-sponge

expressing HEK-293T cells, compared to the exosomes extracted from HEK-293T cells stably expressing mock-Tracer vector (P < 0.0001). (B) The packaging of

miR-21-sponge in exosomes extracted from miR-21-sponge expressing HEK-293T stable cell line, note that its expression was undetermined in HEK-293T

expressing mock-Tracer. *P < 0.05; ****P < 0.0001, which is represented by some statistical software like Graph Pad.

FIGURE 4 | Altered expression of miR-21 and its target genes in U87-MG cells exposed to engineered exosomes. (A) A significant elevation of miR-21 level in

U87-MG cells exposed for 24 or 48 h to the exosomes obtained from pri-miR-21 expressing HEK-293T stable cells (miR-21 enriched exosomes), along with a

downregulation of miR-21 in the cells treated with exosomes obtained from the miR-21-sponge expressing HEK-293T stable cell line (miR-21-sponge containing

exosomes). The expression levels of miR-21 target genes PDCD4 (B) and RECK (C) revealed their expected downregulations in the cells exposed to miR-21 enriched

exosomes and their upregulations in the cells exposed to the miR-21-sponge containing exosomes, at 24 and 48 h after the treatments. Exosomes obtained from

mock-vectors transfected HEK-293T stable cell lines were used as controls to normalized the levels of gene expressions. *P < 0.05, **P < 0.01, ***P < 0.001, which

is represented by some statistical software like Graph Pad.

FIGURE 5 | Cell viability assay in the U87-MG cells exposed to the engineered exosomes. (A) The MTT assay (MTT absorbance at 570 nm) demonstrated a

significant increase in the cell viability of U87-MG cells treated with miR-21 enriched exosomes (P < 0.0001 at 24 h, and P < 0.05 at 48 h). (B) MTT absorbance in

U87-MG cells revealed a significant decreased in cell viability, in the cells exposed to the miR-21-sponge containing exosomes (P < 0.001 at 24 h, and P < 0.05 at

48 h). The cells exposed to the mock-vectors containing exosomes were used as controls. *P < 0.05; ***P < 0.001; ****P < 0.0001, which is represented by some

statistical software like Graph Pad.
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vector expressing and untreated cells. At 24 h after treatment,
miR-21-sponge containing exosomes caused an increase (up to
30.9%, compared to 17% of untreated cells) in the rate of late
apoptosis (Q2) and a decrease in the percentage of the alive
cells (Q4), from 80% on untreated samples to 64% in miR-21-
sponge treated samples (Figure 6). At 48 h post-treatment, less
effects on Q2 and Q4 were seen, in comparison with the 24 h
treatment group. However, an increase in the percentage of the
cells in early apoptosis (Q3) and necrotic cells (Q1) was observed
(respectively, 5.54 and 4.29% of total cell count; Figure 6).
Altogether, our data revealed that miR-21-sponge containing
exosomes have the potential to cause apoptosis and reduce cell
viability in U87-MG target cells, through miR-21 inhibition.

The Therapeutic Effects of Exosomes
Containing miR-21-Sponge on C6 Cells
We quantified the level of miR-21 on C6 cells exposed to the
exosomes enriched for miR-21-sponge. Our data revealed that
the level of miR-21 in C6 cells was significantly altered by
exposure to the miR-21-sponge containing exosomes after 24
and 48 h of treatment, similar to what we observed for U87-MG
cells. A decrease of endogenous miR-21 in the cells exposed to
the miR-21-sponge containing exosomes was observed, that was
more visible at 48 h post-treatment (Figure 7A).

Therapeutic Potential of Administrating
miR-21-Sponge Exosomes on a Rat Model
of Glioblastoma
We measured tumor volume (mm3) at day 11 of stereotaxically
injecting 1 million C6 cells in rat brain. One group of
rat xenograft model received 15–20 µg of miR-21-sponge
containing exosomes and the tumor’s volume were measured
again at day 18. The latter result revealed that administrating
miR-21-sponge packed exosomes in rat brain could repress
tumor growth rate in comparison with untreated as well
as unmodified exosome treated animals (Figures 7B,C). In
all three repeats, we observed a significant retardation of
tumor growth in the group of miR-21 sponge containing
exosomes administration, in comparison to untreated and
unmodified exosome administering groups. Interestingly, the
best results were achieved in glioblastoma models treated
with freshly prepared modified exosomes (without freeze
thawing). In this experimental repeat, the volume of the tumor
decreased by 50% between day 11 and 18th. Also evidence
of tumor necrosis occurrence was evident in some parts
of the tumor (a dark appearance in the middle of tumor
volume; Figure 8).

DISCUSSION

Glioblastoma multiform (GBM) is the most aggressive
form of brain tumors, glioma. It is highly infiltrative and
invasive, creating difficulties which need to be overcame
when searching for a cure. Despite the current standard of
care that combines surgery, radiotherapy and chemotherapy,
GBM patients are nonetheless confronted with frequent

recurrence, and hence their life expectancy is very short
(1, 2, 34). Therefore, introducing novel techniques and potential
molecular cures for clinical trials have a higher justification
for GBM.

The extracellular vesicles, exosomes, are currently considered
an important tool for extracellular communications and clinical
process (35–37). Similar to other cancer cell types, GBM
cells employ exosomes for tumor cells/microenvironment
communications and to facilitate its proliferation, invasion,
and metastatic behaviors (8, 9). One of the major challenges in
exosome-based therapeutics is low productivity of exosomes.
Thus, effective large-scale exosome production methods
are required. Watson et al. (38) showed that yield of
exosomes can be increased by 5–10 fold using a hollow
fiber bioreactor. However, whether yield of exosomes was
actually increased by use of the bioreactor is not clear, since
the obtained sample contained larger vesicles (200–800 nm
in diameter). Other topics about exosomes extraction for
therapeutic approach remained under investigation, such
as best isolation methods, collection of high-quality and
uniform exosomes, optimization of storage conditions,
improvement of therapeutic potential of exosomes, and
delivery of exosomes (38–41). Despite all exosomes challenges
for their optimal use, they are expected to become effective
therapeutic reagents for various diseases and provide
an enormous promise and a fresh therapeutic area for
delivery of different synthetic and biological molecules in
cellular therapy.

Numerous miRNAs with oncogenic and tumor-suppressive
properties have been identified in GBM (42). As we have
currently reported (43), the upregulation of miR-21 in esophageal
tumors was mainly confined to the fibroblasts within the
vicinity of the tumor cells. Moreover, the co-culture experiment
confirmed that miR-21 works as a micro-environmental
signaling molecule to promote invasion behavior of tumor
cells (43). The latter findings suggest a logical base for
blocking the effect of miR-21 in tumor microenvironment as
a possible therapeutic approach to combat tumor progression
and invasion.

microRNA’s presence in exosomes have been already reported
in different cells and cancer types (44–50). Moreover, miR-
21 has been demonstrated to be packaged within exosomes
and released from different cancer types (51–54). In addition,
miR-21 silencing has demonstrated effective results both in
vitro and in vivo (24–28). Suppressing miR-21 also enhanced
the therapeutic effects of antiangiogenic drug, sunitinib, in
glioblastoma (55).

Using decoy or sponge-like constructs for miRNA inhibition
have been already shown before with good effect in binding to its
complementary miRNA(s) or their seed sequences and blocking
their effects (29–31, 56, 57).

Here, we have constructed a miR-21-sponge and
packaged it into secretory exosomes. Introducing
the engineered exosomes to U87-MG and C6 cells
demonstrated a potential therapeutic suitability of the
miR-21-sponge in combat GBM and probably other types
of cancers. The exosomes packed with miR-21-sponge
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FIGURE 6 | The apoptosis rate in U87-MG cells exposed to the engineered exosomes. (A) A typical quadrant analysis of Annexin V-FITC/PI flow cytometry of

U87-MG cells after 24 and 48 h of treatment with miR-21-sponge, compared to the exosomes extracted from the mock-Tracer vector expressing and untransfected

HEK293T cells. The proportion (%) of cell numbers is shown for each quadrant. The proportion of viable cells was shown in Q3 quadrant (FITC−/PI−), early apoptotic

cells shown in Q4 quadrant (FITC+/PI−), late apoptotic cells shown in Q2 quadrant (FITC+/PI+), and necrotic cells shown in Q1 quadrant (FITC−/PI+). (B) An

increased late apoptotic cell numbers and an decreased alive cell numbers in U87-MG cells treated with miR-21-sponge containing exosomes was evident after 24 h

(P < 0.05). At 48 h, there was no significant difference in the late apoptotic and alive cell numbers, however, a significant increase in the early apoptotic and necrotic

cell numbers was observed (P < 0.05). *P < 0.05, which is represented by some statistical software like Graph Pad.

could easily applied to cancer cells without any need for
transfecting reagents.

Our data on the effects of miR-21 enriched exosomes
is in agreement with the previous reports demonstrating
that overexpressed miR-21 in cell lines can increase the
proliferation rate and malignant behavior of the cells (17–23).
On the other hand, as expected, exosomes filled with miR-21-
sponge downregulated miR-21 in U87-MG and C6 cells and
upregulated PDCD4 and RECK in U87-MG target cells. The
latter results approved the suitability of the miR-21-sponge
packaged exosomes to combat GBM, and probably other types
of cancers.

To confirm our results, we also employed C6 cell line
for generating xenograft rat models, because of a close gene
expression pattern to human brain tumors and they are also
widely used in neuro-oncological studies (58–60). Our in vivo
results on the rat model of glioblastoma, demonstrated the
effectiveness of the manipulated exosomes in repressing tumor
growth and inducing tumor retardation. The latter result was
more prominent, when we employed freshly prepared engineered
exosomes. Exosomes stability in different PH, temperature
and other conditions has been already studied and reported.
Moreover, exosomes modifications under a different situation
of maintenance and with a different cycle of freeze thawing
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FIGURE 7 | In vivo analysis results: (A) Downregulation of miR-21 in the C6 cells treated with exosomes enriched with miR-21-sponge at 24 and 48 h in comparison

with cells treated with exosomes obtained from mock-vectors transfected HEK-293T stable cell lines observed. (B) Tumor volume graph on day 11 and 18 after

stereotaxically injecting 1 million C6 cells at CPu position on rat brains. The exosomes treated group received about 15 µg exosomes enriched with miR-21-sponge

on day 11 and control groups had no treatment. (C) MRI pictures from two rats on day 11 and 18 from. The exosomes treated rat’s tumor had growth inhibition on

day 18 in comparison with control rat.

FIGURE 8 | The MRI results on a rat model of glioblastoma treated with fresh exosomes containing miR-21-sponge. Results from the third repeat treated with freshly

prepared exosomes containing miR-21-sponge demonstrated good effects not only in inhibiting tumor growth, but also in eradicating tumor mass. Note the black

area in the middle of the treated tumor on day 18.

has been already reported (61, 62). We can conclude that
freshly prepared exosomes have a better suitability for in
vivo applications.

The existence of the blood-brain-barrier introduces a unique
challenge for applying cell-based gene therapy of brain tumors
(63, 64). Importantly, the engineered exosomes could cross
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the multiple layers of the blood-brain-barrier (BBB) and target
cancer cells within the brain tissue (40, 65–68). It is safe to suggest
that the engineered exosomes have the potential to successfully
cross the BBB and transfer their contents within the brain.
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Supplementary Figure 1 | Transfection of pri-miR-21 and miR-21-sponge

containing vectors into HEK-293T cells. GFP used as a reporter to visualize

transfected cells at 48 h (A) and 15 days post-transfection (B), as well as in stable

cells (C).

Supplementary Figure 2 | Characterizing the purity and nature of the extracted

exosomes. (A) Our exosome’s size with DLS represented good quality and

distribution with a unique size peak under 100 nm (66.65 nm). (B) Western bloting

with special antibodies, anti CD63, and anti CD81, revealed accurate staining of

the exosomes membrane special markers and correct negative answer of markers

in cell lysate. (C) SEM photos with 4 × 104 and 2 × 104 indicated particles size

between 30 and 170 nm, mostly under 100 nm.

Supplementary Figure 3 | Staining with PKH-26 confirmed exosomes entrance

to target cells. Exosomes membrane stained with PKH-26 (showed in red) and

Fixation and target cell nucleus, U87-MG, staining with DAPI (showed in blue) was

done after 12 h, confirmed exosomes entrance to U87-MG target cells.

Supplementary Table 1 | Primers and other used sequences.
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