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Abstract

Background

One of the most widely used evaluation methods in miRNA experiments is qRT-PCR. How-

ever, selecting suitable internal controls (IC) is crucial for qRT-PCR experiments. Currently,

there is no consensus on the ICs for miRNA qRT-PCR experiments in breast cancer. To this

end, we tried to identify the most stable (the least expression alteration) and promising miR-

NAs in normal and tumor breast tissues by employing TCGA miRNA-Seq data and then

experimentally validated them on fresh clinical samples.

Methods

A multi-component scoring system was used which takes into account multiple expression

stability criteria as well as correlation with clinical characteristics. Furthermore, we extended

the scoring system for more than two biological sub-groups. TCGA BRCA samples were

analyzed based on two grouping criteria: Tumor & Normal samples and Tumor subtypes.

The top 10 most stable miRNAs were further investigated by differential expression and sur-

vival analysis. Then, we examined the expression level of the top scored miRNA (hsa-miR-

361-5p) along with two commonly used ICs hsa-miR-16-5p and U48 on 34 pairs of Primary

breast tumor and their adjacent normal tissues using qRT-PCR.

Results

According to our multi-component scoring system, hsa-miR-361-5p had the highest stability

score in both grouping criteria and hsa-miR-16-5p showed significantly lower scores. Based

on our qRT-PCR assay, while U48 was the most abundant IC, hsa-miR-361-5p had lower

standard deviation and also was the only IC capable of detecting a significant up-regulation

of hsa-miR-21-5p in breast tumor tissue.

Conclusions

miRNA-Seq data is a great source to discover stable ICs. Our results demonstrated that

hsa-miR-361-5p is a highly stable miRNA in tumor and non-tumor breast tissue and we
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recommend it as a suitable reference gene for miRNA expression studies in breast cancer.

Additionally, although hsa-miR-16-5p is a commonly used IC, it’s not a suitable one for

breast cancer studies.

Introduction

Identifying dysregulated genes involved in the carcinogenesis and tumor progression is an

important component in cancer research [1]. Recently, high-throughput sequencing tech-

niques is being used to conduct the whole transcriptome profiling, however, the main molecu-

lar diagnosis tests in clinic still relies on the cheaper quantitative real-time RT-PCR technique

[2]. qRT-PCR is one of the most reliable and powerful tools which promises high specificity,

sensitivity, and reproducibility to precisely detect the changes in gene expressions in a broad

range of clinical samples, collected under different conditions [3, 4]. However, the precision of

the results largely depends on choosing correct internal control to normalize the data [5]. Ide-

ally, the expression of a reliable internal control (IC) gene should not be altered in tested tis-

sues or cells under experimental conditions. The ideal internal control gene is universally

valid, with a stable expression level across all tissue samples, cells, and experimental treatments.

Although such an ideal IC has not yet been found [6, 7].

miRNAs represent an important new class of regulatory biomolecules that play fundamen-

tal biological roles including development, differentiation, apoptosis, and metabolism. Over

the past decade numerous studies have been done on misregulation of miRNAs expression in

various cancers, and the suitability of those miRNAs as novel biomarkers to diagnose, classify,

prognose and treat patients with cancer [8, 9]. To use miRNAs as a biomarker in the clinic, it

is crucial to standardize miRNA testing and make it reliable and reproducible in routine diag-

nostic applications. Over the past several years, some technical approaches had been employed

to quantify miRNAs in clinical samples, among them, qRT-PCR has become the most popular

one. Because of its sensitivity and specificity, it can detect low copy number of precursor and

mature miRNA [10].

There is currently no consensus on suitable ICs for quantitative analysis of miRNA in

human breast tissue. It is also clear that the traditionally used GAPDH and β-actin (ABTB)

house-keeping genes are less validated as suitable ICs for miRNAs quantification [11, 12].

Ribosomal RNAs are another choice, however, they are expressed at much higher levels than

target RNAs, making it difficult to normalize rare transcripts and rRNAs at same biological or

clinical samples [13]. Additionally, although small-nucleolar RNAs such as RNU6, RNU6B

and RNU48 are frequently used as reference genes, there existed evidence that snoRNAs can

introduce some bias to miRNA expression in cancer studies [14]. Moreover, it has been argued

that miRNAs must be normalized with internal genes from the same RNA class [12, 15]. Up to

date, only a few candidate reference miRNAs (miR-16 and let-7) have been reported for breast

tissue miRNA quantification [11, 12, 14, 15]. Conversely there has been evidence about the

role of aforementioned ICs in cell differentiation and carcinogenesis [16–18] reinforcing the

need for a better miRNA IC. To choose a study-specific IC, usually, a panel of 5–20 ICs are

tested using qRT-PCR and analyzed by tools like Normfinder, geNorm and BestKeeper [5, 19,

20]. However, this approach is limited to a small number of ICs and the logic behind the

assumption of these methods is that the mean expression of ICs is constant between samples

which is not satisfied when the number of ICs is too low in a qRT-PCR experiment. Addition-

ally, most researchers simply choose their IC based on literature [21].
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Thanks to accession to the total read count, whole transcriptomic RNA-Seq data is a great

source to discover stably expressed reference genes. Unlike qRT-PCR data, within samples

technical variation can be normalized without control genes. Some studies have taken advan-

tage of this source of data to identify stably expressed reference genes in various diseases, and

have reported its adequacy for this purpose [22–24].

This study aimed to find the most suitable references for normalizing qRT-PCR data on

miRNA expression in breast tissues, using a multi-component scoring system on miRNA-Seq

data. Our scoring method takes into account multiple expression stability criteria as well as

finding their correlation with clinical aspects of the samples. The top 10 most stable and prom-

ising miRNAs were introduced and evaluated. hsa-miR-361-5p was the best miRNA in overall

scores for both tumor & normal samples as well as tumor subtype grouping criteria. We vali-

dated our findings using qRT-PCR assay and revealed hsa-miR-361-5ps superiority over hsa-

miR-16-5p and U48.

Materials & methods

miRNA-Seq dataset

The Cancer Genome Atlas (TCGA) is a landmark cancer genomics program which includes

molecular datasets for various type of cancer tissues [25]. The breast cancer (BRCA) miRNA

expression data of TCGA was obtained via TCGAbiolinks package v2.12.3 [26] specifying data

type as Isoform Expression Quantification. 1097 tumor tissue and 104 adjacent normal tissue

samples were obtained. miRNA names were annotated by miRBase v21 using miRBaseCon-

verter v1.8 [27]. CPM (read counts per million) values were used as a measure of expression

level of miRNAs in stability analysis.

Multi-component reference gene scoring system

A multi-component scoring system introduced by Krasnov et al. [28] was used in the context

of miRNA expression. We modified and extended it in order to give it the ability of handling

more than two subgroups. This system consists of several scoring components Si which exam-

ine gene’s expression value and its dispersion in subgroups and pooled samples, as well as cor-

relation with clinical and pathological features of patients. Detailed description of each

component is presented in Table 1. Overall expression stability score Sexp is calculated as

weighted geometric mean of scoring components Eq (1).

SExp ¼
YN

i¼1

Si þ CAið Þ
Wi

 !1=
PN

i¼1
Wi

ð1Þ

Here: Wi specifies each component’s importance.

CAi is a constant to prevent zero values of Si from making whole expression zero.

N is the number of components.

Each component is calculated based on a parameterized (1-sigma)-like function as in Eq

(2):

Si ¼
100

1þ Sq þ
max x� IV;0ð Þ

IP� IV

� �CS ð2Þ

Detailed description can be found in the associated paper [28].
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Extended scoring system for more than two subgroups

In order to extend the scoring system for multiple subgroups, following manipulations were

carried out:

1. Components associated with paired samples were removed.

2. For SDP, logFC was calculated between every two subgroups of the data.

3. Beside SEA, all other scoring components were applied to each subgroup separately and the

weights were distributed according to the number of subgroups.

Sample collection

Primary breast tumor tissues (n = 68) were obtained from patients undergoing surgery, at

Khatam-al-Anbia and Rasoul-Akram Hospitals, Tehran, Iran. This research involved collect-

ing human tissues with no experimenting on human subjects or animals. In vitro experiments

on commercial cell lines and pathological samples were approved by Ferdowsi University of

Table 1. Components of scoring function (obtained from associated paper).

Component factor Variable (x = . . .)� IV IP CS Sq CA W Number of Times applied

SDP T-N expression level

difference (pooled samples)

Abs (log2FC p) 10–90 0.05 0.25 2.5 1 0 4 1 (all samples)

SDL T-N expression level

difference (paired samples)

Abs (Average

(log2FCL) 10–90)

1 (paired samples)

SDoO T-N expression level

difference: outliers,

overexpression

Abs (Average

(log2FCL) 90–100)

0.1 0.7 2.5 1 10 1 1 (paired samples)

SDoU T-N expression level

difference: outliers,

underexpression

Abs (Average

(log2FCL) 0–10)

1 (paired samples)

SDLc Cumulative T-N expression

difference among paired

samples

Average (Abs

(log2FCL) 10–90)

0.1 0.5 2.5 1 5 2 1 (paired samples)

SEStD Expression level stability:

standard deviation

StDev (CPM) 10–90

/Average(CPM) 10–90

0.1 0.3 2 1 5 1.5 2 (all samples: normal and tumor)

SEoH Expression level stability:

outliers (high expression)

log2 (Average(CPM)

90–100 /Average

(CPM) 10–90)

0.1 0.7 2.5 1 5 0.75 2 (all samples: normal and tumor)

SEoL Expression level stability:

outliers (low expression)

log2 (Average(CPM)

10–90 /Average

(CPM) 0–10)

2 (all samples: normal and tumor)

SEA Average expression level 1/log2 (CPM) 10–90 0.30�� 0.43�� 3 1 0 6 1 (all tumor samples)

SCp Correlations of expression

with clinical parameters (p-

values)

-log2 (p-value) 2 4 3 0.3 5 0.3 15 (3 × 5; 3: CPM10-90 all tumor samples, CPM10-90 all

normal samples, (log2FCL)10-90; 5: pathologic TNM

classification, pathologic stage, neoplasm cancer status)

SCr Correlations of expression

with clinical parameters (rs)

Abs (rs) 0.1 0.25 2.5 0.3 5 0.2 15 (the same as above)

IV, ideal value; IP, inflection point; CS, curve slope; Sq, “squeeze”; CA, constant add; W, weight; Abs (. . .), absolute value; Average (. . .), mean value; CPM, counts per

million, gene expression level; FCP, ratio of the average CPM in a pool of tumor samples to the average CPM in a pool of normal samples; FCL, ratio of CPM values

between tumor and matched normal tissue (per each paired sample); StDev (. . .), standard deviation; rs, Spearman’s correlation coefficient.

� Percentiles, which were taken into calculation, are indicated as a subscript.

�� These two parameters are different from the associated paper. as we filtered out miRNAs based on their expression level threshold of 5.9 CPM, here IV and IP were

set as 1/log(10) and 1/log(5).

https://doi.org/10.1371/journal.pone.0253009.t001
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Mashhad (code number: IR.UM.REC.1399.104). Samples were categorized into 34 pairs of

breast tumor and their adjacent apparently normal tissues from October 2018 to June 2019.

The studied specimens were examined by pathologists and classified according to the standard

histopathological parameters. Tissues were immediately snap-frozen in liquid nitrogen and

stored at -80˚C until RNA extraction. Clinicopathologic characteristics of patients are summa-

rized in Table 2 as well as S1 Table.

Total RNA isolation

Total RNA was isolated from all samples (approximately 100 mg) using the RiboEx Total RNA

reagent (GeneAll Biotechnology, South Korea). The amount of extracted RNA was quantified

by measuring the absorbance at 260 nm. The purity of the RNA was determined by calculating

the ratio of the absorbance at 260 and 280 nm. The absence of degradation of the RNA was

confirmed by electrophoresis of the RNA on a 1% agarose gel containing ethidium bromide.

Polyadenylation and reverse transcription

For the S-Poly(T) method, extracted total RNA was polyadenylated with Poly(A) Polymerase

Tailing Kit (New England Biolabs., UK., Ltd.). Briefly, a 10 μl reaction including 1 μg total

RNA, 1 μl of 10 × reaction buffer, 1 μl of 10 mM ATP and 1 unit of Poly(A) polymerase was

incubated at 37˚C for 30 min, followed by enzyme inactivation at 65˚C for 5 min. After polya-

denylation, reverse transcription was performed in a 20 μl reaction containing 10 μl of the

polyadenylation reaction product, 2 μl of Anchored Oligo(dT), 1 μl of RiboLock RNase Inhibi-

tor (20 U/μL), 4 μl of 5X Reaction Buffer, 2 μl 10 mM dNTP Mix, and 1 μl of RevertAid

M-MuLV RT (200 U/μL) (Thermo Fisher Scientific., UK). The reaction was incubated at 42˚C

for 70 min and then terminated by heating at 70˚C for 5 min.

Table 2. Clinicopathologic characteristics of 34 breast cancer patients.

Age (mean ± SD) 50 ± 10 TNM classification Cases (n)

Tumor Subtype Cases (n) T = 1 13

luminal A 22 T = 2 12

luminal B 2 T = 3 3

Her2 Overexpressed 2 Undefined T 6

TNBC 3 N = 0 17

Undefined Subtype 5 N = 1 5

Grade Cases (n) N = 2 5

I 4 N = 3 1

II 16 Undefined N 6

III 9 M = 0 34

Undefined Grade 5

Stage Cases (n)

I 9

IIA 10

IIB 3

IIIA 5

IIIC 1

Undefined Stage 6

T, N and M refer to the primary tumor size, nodal status and distant metastases status according to the TNM classification system. TNBC, Triple Negative Breast

Cancer.

https://doi.org/10.1371/journal.pone.0253009.t002
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RT-PCR and real-time qRT-PCR

PCR assays were performed using the primers listed in Table 3. All oligonucleotides were ana-

lyzed for potential secondary structure and dimerization using OligoAnalyzer 3.1. qRT-PCR

was performed on a StepOne Plus System (Applied Biosystems) using Power EVA Green PCR

Master Mix (BIOFACT Co., Ltd., Korea). PCR was performed using the following protocol:

initial denaturation 95˚C for 5 min, then 40 cycles at 95˚C for 15 s, 60˚C for 20 s, 72˚C for 20 s.

To verify that the used primer pair produced only a single product, a DNA melting curve anal-

ysis was utilized after thermocycling, determining dissociation of the PCR products from 60 to

95˚C (with a heating rate of 0.3˚C and continuous fluorescence measurement). All the

qRT-PCR reactions were carried out in triplicate for each sample. The p-values obtained for

five cDNA dilutions (1:1, 1:2, 1:4, 1:8, 1:16).

Primer validation

The amplification efficiency of all primer pairs varied from 80% to 99% and the coefficient of

determination (R2) ranged between 0.794 and 0.983. Single peaks were observed for the prod-

ucts of all primer pairs according to the melting curve analysis, and the sequences of the ampli-

fied DNA fragments matched the sequences of the reference and target genes in GenBank.

Statistical analysis

All statistical analysis were executed in RStudio integrated development environment

v1.2.5033 and R language v3.6.1 [29]. Differential Expression analysis was performed using

limma+voom package v3.40.6 [30, 31]. Benjamini-Hochberg adjusted p-value of 0.05 was set

as statistical significance threshold. The web tool miRPower [32] which performs survival anal-

ysis and provides Kaplan-Meier plots was utilized with dataset as METABRIC [33] with 1262

breast tissue samples to evaluate ICs in terms of their association with prognostic features.

Low- and high-risk groups were split based on median expression. Other figures were pro-

vided using ggplot2 v3.2.1 [34] and fmsb v0.7.0 [35] packages.

Results

Most stable miRNAs in breast tissue based on multi-component scoring

system

Starting our work on TCGA miRNA expression data (104 normal and 1097 tumor samples of

breast), we first filtered out miRNAs which had expression levels less than 5.9 CPM (count per

Table 3. qRT-PCR primers.

Gene Accession number Primer Band size Sequence (5’-3’)

hsa-miR-16-5p MIMAT0000069 Forward 72 bp GCGGGTAGCAGAACGTAAATA

hsa-miR-361-

5p

MIMAT0000703 Forward 71 bp GGCGTTATCAGAATCTCCAGG

hsa-miR-21-5p MIMAT0000076 Forward 70 bp CCGGCCTAGCTTATCAGACTG

SNORD 48 NR_002745 Forward 122 bp TGACCCCAGGTAACTCTGAGTGTGT

Universal Reverse

primer

AACTCAAGGTTCTTCCAGTCACG

Anchored Oligo dT mix GCGTCGACTAGTACAACTCAAGGTTCTTCCAGTCACGACGTTTTTTTTTTTTTTTTTT
(V)

The comparative threshold cycle (Ct) was determined for each miRNA and the relative amount of each miRNA in individual samples were described as ΔCt (Ct

miRNA- Ct internal control). ΔCt values were employed for expression level comparison of miRNAs in control vs. cancerous samples.

https://doi.org/10.1371/journal.pone.0253009.t003
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million, equivalent to average read count of 20) in more than 5 percent of samples. Using this

filter, 185 miRNAs remained for further analysis. In order to obtain the most promising and

stable internal miRNA controls we ran our multi-component scoring system on two different

grouping criteria. Firstly, based on Tumor & Normal samples and secondly based on Tumor

Subtypes. Tumor Subtypes were defined as: Estrogen receptor status positive (n = 795), Her2

receptor over expressed (n = 39) and Triple Negative Breast Cancer (n = 125; Fig 1). The hsa-

miR-361-5p had the highest stability score in both grouping criteria, reaching scores of 85.7

and 76.1 out of 100. By using Robust Ranking Aggregation (RRA) [36] we aggregated rankings

of the two grouping criteria. According to the aggregated ranks, hsa-miR-361-3p, hsa-miR-

423-5p and hsa-miR-152-3p were the best ICs after hsa-miR-361-5p. Expression level of top 10

miRNAs along with hsa-miR-16-5p are represented in Fig 2A. Among them, hsa-miR-199a-3p

and hsa-miR-199b-3p were the most abundant miRNAs.

Correlation with clinical and pathological characteristics

In each biological subgroup, Spearman’s correlation coefficient was calculated between the

most stable miRNA expression and the following 5 features: TNM (Tumor, Node, and

Fig 1. Multi-component scoring results for different grouping criteria. (A) for Tumor & Normal grouping criterion and (B) Tumor Subtypes. (C) is

the aggregated Rank results using scorings in (A) and (B). The Rank column in (C) represents miRNAs rank in that grouping criterion. All scores are

out of 100.

https://doi.org/10.1371/journal.pone.0253009.g001
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Metastasis) classification indexes, pathologic stage and follow-up person neoplasm cancer sta-

tus. The most significant correlations were as follows: hsa-let-7g-5p with Tumor (p�0.001)

and pathologic stage (p�0.001) and hsa-miR-199a-3p with Node (p�0.005; Fig 2B).

Differential expression analysis

A differential expression analysis for Tumor vs Normal samples was performed on TCGA

BRCA miRNA-Seq data considering both paired samples and all samples. As presented in

Table 4, although there are some significant differentiations in the most stable miRNAs, their

abs (logFC) are smaller than 0.32.

Survival analysis

Kaplan-Meier survival analysis was carried out on METABRIC breast cancer dataset

(n = 1262) for each of 10 most stable miRNAs. As it is shown in Table 5, three of them had

Fig 2. Expression level and correlation with clinical aspects in top 10 most stable miRNAs. (A) Expression level of top 10 most stable miRNAs + hsa-

miR-16-5p for comparison. CPM, Count Per Million. (B) most stable miRNAs correlation with clinical aspects in various biological subgroups. Colors

represent statistical significance: red, p<0.01; yellow, 0.01<p<0.1; green, p>0.1. ERpos, Estrogen positive; Her2over, Her2 Overexpressed; Normal,

adjacent Normal Tissue; TNBC, Triple Negative Breast Cancer; T, N and M are TNM classification indexes; Stage, pathological Stage; Neop, Neoplasm

Status.

https://doi.org/10.1371/journal.pone.0253009.g002

Table 4. Differential expression analysis for Tumor vs Normal samples on TCGA breast cancer miRNA-Seq data.

logFC adj.P.Val logFC_paired adj.P.Val_paired Mean Exp.

hsa-miR-361-5p -0/13 0/05 -0/31 1/38E-05 726

hsa-miR-361-3p -0/15 0/11 -0/11 0/31 535

hsa-miR-423-5p -0/11 0/20 -0/26 0/01 193

hsa-miR-152-3p -0/31 0/0005 -0/21 0/02 905

hsa-miR-132-3p -0/18 0/03 -0/32 0/006 284

hsa-let-7g-5p 0/11 0/07 0/06 0/5 1849

hsa-miR-199a-3p -0/16 0/11 0/19 0/04 14361

hsa-miR-625-3p 0/04 0/73 0/08 0/57 889

hsa-miR-664a-3p -0/19 0/06 -0/09 0/44 140

hsa-miR-199b-3p -0/15 0/11 0/19 0/03 14315

significant p-values are in bold style. Mean Exp., mean read count expression; logFC, log Fold Change.

https://doi.org/10.1371/journal.pone.0253009.t004
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significant association with overall survival: hsa-miR-625-3p (p�0.00005), hsa-miR-199a-3p

(p�0.004) and hsa-let-7g-5p (p�0.02). Data for hsa-miR-664a-3p and hsa-miR-199b-3p were

not available in the METABRIC dataset. Detailed Kaplan-Meier plots are shown in Fig 3.

miR-361-5p comparison with miR-16-5p on TCGA data

As a promising IC for breast cancer qPCR experiments, hsa-miR-16-5p is a well-known candi-

date. However, according to our ranking system it was ranked 99th among 185 short-listed

miRNAs. Its detailed scores are exhibited in Fig 1. Fig 4A depicts its expression level (in CPM)

beside hsa-miR-361-5p, showing hsa-miR-361-5p’s lower standard deviation. Fig 4B illustrates

that hsa-miR-361-5p had a higher score in most of our scoring components. As a result of dif-

ferential expression analysis on tumor vs normal samples, hsa-miR-16-5p was significantly dif-

ferentiated (adj.p.value: 1.6e-13 lfc: 0.62) while hsa-miR-361-5p showed minor differentiation

(adj.p.value: 0.05 lfc: -0.13). As displayed in Fig 4C, hsa-miR-361 had lower abs (LFC) com-

pared to hsa-miR-16-5p in paired tumor and normal samples. Overall, based on our analysis

of TCGA miRNA-Seq data, hsa-miR-361-5p is more stable and reliable IC than hsa-miR-16-

5p.

Experimental validation using qRT-PCR

A profile of 34 paired samples for breast cancer tumor and adjacent normal tissues were

assessed by qRT-PCR to validate hsa-miR-361-5p as a promising IC. We examined the expres-

sion of hsa-miR-361-5p, hsa-miR-16-5p, as well as U48 control gene. hsa-miR-16-5p was not

detected in two samples, so we excluded them from our analysis. U48 and miR-361-5p had a

higher expression level in comparison with miR-16-5p (Fig 5A). Among them, U48 was the

most abundant control with a median Ct of 26.64. Standard deviation of raw Ct values was

used as a stability measure. Fig 5B shows that hsa-miR-361-5p had the lowest standard

deviation.

Effect on relative expression of hsa-miR-21-5p

hsa-miR-21-5p is one of the most up-regulated miRNAs in breast cancer [37]. In order to eval-

uate our candidate IC, we measured hsa-miR-21-5p’s expression level on 12 pairs of tissues

randomly, using hsa-miR-361-5p, hsa-miR-16-5p as well as U48. As presented in Fig 5C, hsa-

miR-361-5p was the only one which could detect hsa-miR-21-5p’s up-regulation, while there

was no significant change in hsa-miR-21-5p when normalization was done with U48 or hsa-

miR-16-5p.

Table 5. Association with overall survival (OS) on METABRIC dataset.

log-rank p HR

hsa-miR-361-5p 0/84 0/98

hsa-miR-361-3p 0/86 1/02

hsa-miR-423-5p 0/6 0/95

hsa-miR-152 0/65 0/96

hsa-miR-132 0/2 0/88

hsa-let-7g-5p 0/02 0/79

hsa-miR-199a-3p 0/004 0/75

hsa-miR-625 0/000059 0/67

HR, Hazard Ratio.

https://doi.org/10.1371/journal.pone.0253009.t005
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Discussion

Since their discovery, miRNAs emerged as important molecules in cancer initiation, progres-

sion and pathogenesis [8]. Similar to mRNA expression analysis, qPCR for miRNA quantifica-

tion requires proper normalization strategies to compensate any non-biological variations

[38]. Internal reference genes are currently used as the most universal and accurate method of

normalization in qRT-PCR studies [5]. Reference genes might ideally have constant and high

expression levels under various circumstances in almost all tissue types. However, such a refer-

ence gene does not exist [6]. Luckily, this is not a serious issue since most experimental designs

are restricted to few tissue or different histological types of the same tissue.

Different RNA species, including rRNAs, tRNAs, snRNAs, and miRNAs have previously

been used as ICs in miRNA real-time q-PCR studies of breast cancer. However, researchers

are concerned about their use in normalization, mostly due to their very high expression levels

as well as some biases in their stability [14, 39, 40].

Several miRNA expression analysis studies on different tissues have used miRNAs like

miR-16 to normalize the expression of interested miRNAs. However, there are controversies

Fig 3. Overall survival Kaplan-Meier plots of top 10 most stable miRNAs. The dataset is METABRIC (n = 1262).

Low- and high-risk groups were split based on median expression. Data for hsa-miR-664a-3p and hsa-miR-199b-3p

were not available in the METABRIC dataset.

https://doi.org/10.1371/journal.pone.0253009.g003
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about the suitability of these miRNAs as a good normalizer. Mattie et al. used miR-16 and let-7

to normalize miRNA expression on breast tissue sample. Later, Davoren et al. demonstrated

their stable expression in malignant, benign, and normal breast tissues [11, 41, 42]. Also, Early

studies on miRNAs expressions in breast cancer utilized miR-16 as a normalizer [43, 44].

Interestingly, there are evidence that miR-15a/16-1 is involved in the regulation of cell prolifer-

ation, apoptosis and invasion [45]. In two other studies, it is reported that miR-16 was signifi-

cantly downregulated in malignant prostate and breast tissues [17, 46].

To our knowledge there has been only one study that had been miRNA-Seq data to detect

promising ICs for breast cancer qRT-PCR studies, in which let-7i-5p and miR-361-5p have

been suggested as a suitable one. However, they have used only three criteria to select the best

reference miRNAs: mean expression, coefficient of variation and expression fold change

between normal & tumor samples [47]. The approach doesn’t take into account other features

like clinical or pathologic aspects and also miRNA differentiation between subtypes of tumor

samples which are commonly investigated in many cancer studies.

Here, we have discovered the most stable and reliable miRNA ICs for breast cancer

qRT-PCR studies, based on TCGA miRNA-Seq data using a multi-component scoring system.

This system not only considers the expression stability of miRNAs in different biological

groups like tumor subtypes but also checks out for correlation with clinical features of

samples.

We investigated TCGA miRNA-Seq breast cancer data for most stable miRNAs based on

two sample grouping criteria. First Tumor & Normal samples, second Tumor Subtypes. This

approach not only considered tumor-normal differentiation but also within tumor samples

variation due to subtypes of breast cancer. This is important because lots of breast cancer

Fig 4. Comparison between hsa-miR-361-5p and hsa-miR-16-5p. (A) Expression level of hsa-miR-361-5p and hsa-miR-16-5p in two different

grouping criteria based on TCGA data. T stands for Tumor; N, Adjacent Normal; ERpos, Estrogen Receptor Positive; Her2, Her2 Receptor

overexpressed; TNBC, Triple Negative Breast Cancer. (B) Radar plot of scoring components of the multi-component scoring system. To make the plot

more compact, following components are averaged. SEo: SEoL, SEoH; SDo: SDoO SDoU; SC: SCr, SCp. (C) Log2 Fold Change of Tumor Vs Normal

paired samples based on TCGA data for candidate reference miRNAs along with hsa-miR-21-5p as a well-known oncomiR.

https://doi.org/10.1371/journal.pone.0253009.g004
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experiments are focused on tumor subtypes. After applying our scoring system, top 10 most

stable miRNAs were selected for further investigation.

hsa-miR-361-5p had the highest stability score among well-expressed miRNAs, followed by

hsa-miR-361-3p and hsa-miR-423-5p. hsa-miR-361-5p ranked first in both grouping criteria

showing its convenience for both paired samples and tumor subtype studies.

There are few reports on miR-361-5p role in breast cancer. Zhan, et al., used miRNA-Seq

data to detect stably expressed miRNAs in 14 human tumor types. hsa-miR-361-5p was

reported as a candidate reference miRNA in eight of 14 cancer types including breast cancer

[47]. On the other hand, there are some reports on down-regulation of miR-361-5p in breast

cancer [48] and also TNBC subtype [49, 50]. However, both researches have used U6 small

nuclear RNA as normalizer for their qRT-PCR validation, which is argued to be up-regulated

in breast tumor tissue itself and could potentially lead to data-misinterpretation in breast can-

cer qRT-PCR experiments [15]. It has also not escaped our notice that, as exhibited in Table 4,

hsa-miR-361-5p had some down-regulation in TCGA paired samples, however, its fold change

was low (1.2 for normal vs tumor). Moreover, while in our analysis hsa-miR-361-5p had no

Fig 5. qRT-PCR validation. (A) qRT-PCR raw 40-Ct values of candidate internal controls. The qRT-PCR was ran for 40 cycles so 40-Ct is a measure of

expression level. (B) Standard Deviation of candidate internal controls based on raw Ct values of qRT-PCR (C) Expression level of hsa-miR-21-5p

normalized with candidate internal controls based on qRT-PCR data. ns: not significant differentiation in Tumor vs Normal samples; ���: p-

value<0.001.

https://doi.org/10.1371/journal.pone.0253009.g005
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significant association with overall survival, in one study hsa-miR-361-5p has been reported as

a prognostic biomarker for disease free survival, specifically in TNBC subtype [49].

To compare hsa-miR-361-5p usefulness with a commonly used IC, we compared hsa-miR-

16-5p expression in the same samples. hsa-miR-361-5p had a better performance in all scoring

components except for SDo which is related to the expression of outliers in paired samples. We

sat the lower and upper 10% of all samples as outliers.

To validate the suitability of hsa-miR-361-5p as an IC, we performed a qRT-PCR experi-

ment on 34 pairs of tumor and adjacent normal tissue samples. We then quantified hsa-miR-

361-5p along with two commonly used ICs, hsa-miR-16-5p and U48. hsa-miR-361-5p had

lower standard deviation compared to the others and thus turned out to be a better IC for nor-

mal and tumor tissues of breast.

One of the main methods to evaluate the suitability of an IC is to test its performance as a

normalizer for quantification the expression of a well-examined gene or miRNA. hsa-miR-21-

5p is an oncomiR which is up-regulated in almost all tumor samples [37]. This is further con-

firmed based on our analysis on TCGA dataset, as shown in Fig 4B. We examined the perfor-

mance of hsa-miR-361-5p, hsa-miR-16-5p and U48 as an IC and to assess how they can affect

the expression level of hsa-miR-21-5p in tumor samples. Surprisingly, hsa-miR-361-5p was the

only IC capable of showing the significant up-regulation of hsa-miR-21-5p in our real-time

experiment. Moreover, while U48 was a stable reference gene in tumor and normal samples, it

could not efficiently detect the significant up-regulation of hsa-miR-21 in tumor samples.

There have been two limitations to our study that should be considered. First, in the

qRT-PCR validation phase, most of our tumor samples subtypes were luminal A (64%) and

second, the number of samples for evaluating hsa-miR-21-5p expression was low (12 pairs).

In Conclusion, we first introduced the top most stable miRNAs in breast cancer and normal

tissues, using a multi-component scoring system on TCGA miRNA-Seq data. This system

takes into account the expression stability along with clinical and pathological characteristics

of samples. Secondly, we validated that hsa-miR-361-5p is a promising IC for breast cancer

qRT-PCR studies and compared it with two commonly used ICs to show its superiority.
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